

TEST REPORT

Product Name : Battery Charger Model Number : NBW54D601D3D01

Prepared for Address	:	Shenzhen AMC Technology Co., Ltd. (1-7 / F) 101, Building 3, No. 11, Baolong First Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, Guangdong, P.R. China.
Prepared by Address	:	EMTEK(DONGGUAN) CO., LTD. -1&2/F.,Buiding 2,Zone A,Zhongda Marine Biotechnology Research and Development Base,N.9,Xincheng Avenue,Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Tel : +86-0769-22807078 Fax: +86-0769-22807079
Report Number	:	EDG2310300252E01001R

Report Number	:	EDG2310300252E01001R
Date(s) of Tests	:	November 27, 2023 to February 02, 2024
Date of issue	:	February 03, 2024

TABLE OF CONTENTS

1. DESCRIPTION OF STANDARDS AND RESULTS	7
2. GENERAL INFORMATION	
2.1. Description of Device (EUT)	
2.2. Description of Test Facility	
2.3. Description of Support Device	
2.4. Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	
3.1. For Conducted Disturbances at the AC mains port	
3.2. For Radiated Emission	
3.3. For Harmonic / Flicker Measurement	
3.4. For Electrostatic Discharge Test	
3.5. For Fast Transients Test	
3.6. For Surge Test	
3.7. For Injected Currents Test	
4. CONDUCTED DISTURBANCES AT THE AC MAINS PORT	
4.1. Block Diagram of Test Setup	
4.2. Measurement Standard and Limits	
4.3. EUT Configuration on Measurement	
4.4. Operating Condition of EUT 4.5. Test Procedure	
4.6. Measurement Results	13
	10
5. DISCONTINUOUS DISTURBANCE	
5.1. Block Diagram of Test Setup	18
5.1. Block Diagram of Test Setup	18 18
5.1. Block Diagram of Test Setup5.2. Measurement Standard and limit5.3. EUT Configuration	18 18 18
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 	18 18 18 18
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 	18 18 18 18 19
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 	18 18 18 18 19 19
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ)	18 18 18 18 19 19 20
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 	18 18 18 18 19 19 20 20
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 	18 18 18 18 19 19 20 20 20
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 	18 18 18 19 19 20 20 20 21
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 	18 18 18 19 19 20 20 21 21
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 	18 18 18 19 19 20 20 20 21 21
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 	18 18 18 19 19 20 20 21 21 21 21
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	18 18 18 19 19 20 20 21 21 21 21 21 21
 5.1. Block Diagram of Test Setup	18 18 18 19 19 20 20 21 21 21 21 21 26
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz) 7.1. Block Diagram of Test Setup 7.2. Radiated Limit 	18 18 18 19 19 20 20 21 21 21 21 21 26 26 26
 5.1. Block Diagram of Test Setup	18 18 18 19 19 20 20 21 21 21 21 21 21 26 26 27
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz) 7.1. Block Diagram of Test Setup 7.2. Radiated Limit 7.3. Test Procedure 7.4. Measuring Results 	18 18 18 19 19 20 20 20 21 21 21 21 21 26 26 27 27
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz) 7.1. Block Diagram of Test Setup 7.2. Radiated Limit 7.3. Test Procedure 7.4. Measuring Results 8. HARMONIC CURRENT MEASUREMENT	$ \begin{array}{c} \dots & 18 \\ \dots & 18 \\ \dots & 18 \\ \dots & 19 \\ \dots & 19 \\ \dots & 20 \\ \dots & 20 \\ \dots & 20 \\ \dots & 21 \\ \dots & 21$
 5.1. Block Diagram of Test Setup 5.2. Measurement Standard and limit 5.3. EUT Configuration 5.4. Operating Condition of EUT 5.5. Test Procedure 5.6. Test Results 6. RADIATED EMISSION (UP TO 1GHZ) 6.1. Block Diagram of Test 6.2. Measurement Standard and limit 6.3. EUT Configuration on Test 6.4. Operating Condition of EUT 6.5. Test Procedure 6.6. Test Results 7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz) 7.1. Block Diagram of Test Setup 7.2. Radiated Limit 7.3. Test Procedure 7.4. Measuring Results 	18 18 18 19 19 20 20 20 21 21 21 21 21 26 26 27 27 28 28

Access to the W	
8.3. Operating Condition of EUT	
8.4. Test Results	
9. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT	32
9.1. Block Diagram of Test Setup	32
9.2. Measuring Standard	
9.3. Operating Condition of EUT	
9.4. Test Results	
10. IMMUNITY GENERAL PERFORMANCE CRITERIA DESCRIPTION	
11. ELECTROSTATIC DISCHARGE TEST	
11.1. Block Diagram of Test Setup	
11.2. Test Standard	
11.3. Severity Levels and Performance Criterion	
11.4. EUT Configuration	
11.5. Operating Condition of EUT	
11.6. Test Procedure	
11.7. Test Results	
12. FAST TRANSIENTS TEST	
12.1. Block Diagram of Test Setup	
12.2. Test Standard	
12.3. Severity Levels and Performance Criterion	
12.4. EUT Configuration	
12.5. Operating Condition of EUT	
12.6. Test Procedure	
12.7. Test Results	
13. SURGE TEST	
13.1. Block Diagram of Test Setup	41
13.2. Test Standard	
13.3. Severity Levels and Performance Criterion	
13.4. EUT Configuration	41
13.5. Operating Condition of EUT	
13.6. Test Procedure	
13.7. Test Results	42
14. INJECTED CURRENTS TEST	44
14.1. Block Diagram of Test Setup	44
14.2. Test Standard	
14.3. Severity Levels and Performance Criterion	44
14.4. EUT Configuration	44
14.5. Operating Condition of EUT	45
14.6. Test Procedure	45
14.7. Test Results	
15. VOLTAGE DIPS AND INTERRUPTIONS TEST	47
15.1. Block Diagram of Test Setup	
15.2. Test Standard	
15.3. Severity Levels and Performance Criterion	
15.4. EUT Configuration	

 东莞市信测科技有限公司

 地址: 广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址: Http://www.emtek.com.cn 邮箱: E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China

 Http://www.emtek.com.cn

Access to the World

15.5. Operating Condition of EUT	
15.6. Test Procedure	
15.7. Test Results	
16. PHOTOGRAPH	50
16.1. Photo of Conducted Emission	50
16.2. Photo of Radiated Emission	51
16.3. Photo of Harmonic/Flicker	
16.4. Photo of Electrostatic Discharge Test	
16.5. Photo of Fast Transients Test	
16.6. Photo of Surge Test	53
16.7. Photo of Injected Currents Test	54
16.8. Photo of Voltage Dips And Interruptions Test	54

APPENDIX (Photos of EUT) (4 pages)

TEST REPORT VERIFICATION

Applicant	:	Shenzhen AMC Technology Co., Ltd.
Manufacturer	:	Shenzhen AMC Technology Co., Ltd.
Factory	:	Shenzhen AMC Technology Co., Ltd.
EUT	:	Battery Charger
Model No.	:	NBW54D601D3D01
Rating	:	Input: AC 100-240V 50-60Hz 2.5A MAX Output: DC 53.6V 3.9A MAX

Measurement Procedure Used:

EN IEC 55014-1: 2021 EN IEC 61000-3-2: 2019+A1:2021, EN 61000-3-3:2013+A2:2021 EN IEC 55014-2: 2021 (IEC 61000-4-2:2008, IEC 61000-4-4:2012, IEC 61000-4-5: 2014+AMD1:2017, IEC 61000-4-6:2013/COR1:2015, IEC 61000-4-11: 2020)

The device described above is tested by EMTEK(DONGGUAN) CO., LTD. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and EMTEK(DONGGUAN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT to be technically compliant with the EN IEC 55014-1, EN IEC 61000-3-2, EN 61000-3-3 and EN IEC 55014-2 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of EMTEK(DONGGUAN) CO., LTD.

Date of Test :

November 27, 2023 to February 02, 2024

alen

Prepared by :

Galen Xiao / Editor

Reviewer :

Tim Dong / Supervisor Sam Lv / Manager 8

Approved & Authorized Signer :

Modified Information

Version	Summary	Revision Date	Report No.
	Original Report	/	EDG2310300252E01001R

1. DESCRIPTION OF STANDARDS AND RESULTS

	EMISSION		
Description of Test Item	Standard	Limits	Results
Conducted Disturbances at the AC mains port	EN IEC 55014-1: 2021	Table 5	Pass
Discontinuous Disturbance (Click)	EN IEC 55014-1: 2021	Clause 4.4	N/A
Disturbance Power (30 MHz to 300 MHz)	EN IEC 55014-1: 2021	Table 7,Table 8	N/A
Radiated Emission (30 MHz to 1000 MHz)	EN IEC 55014-1: 2021	Table 9	Pass
Radiated Emission (1 GHz to 6 GHz)	EN IEC 55014-1: 2021	Table 11	N/A
Harmonic Current Emissions	EN IEC 61000-3-2: 2019+A1:2021	Class A	Pass
Voltage Fluctuation and Flicker	EN 61000-3-3:2013+A2:2021	Clause 5	Pass
	IMMUNITY		
Description of Test Item	Basic Standard	Performance Criteria	Results
Electrostatic Discharge (ESD)	IEC 61000-4-2:2008	В	Pass
Radio frequency electromagnetic fields	IEC 61000-4-3:2020	A	N/A
Fast Transients (EFT)	IEC 61000-4-4:2012	В	Pass
Surges	IEC 61000-4-5: 2014+AMD1:2017	В	Pass
Injected Currents	IEC 61000-4-6:2013/COR1:2015	A	Pass
Voltage Dips, 100%		С	Pass
Voltage Dips, 60%	IEC 61000-4-11: 2020	С	Pass
Voltage Dips, 30%		С	Pass
Note: N/A is an abbreviation for Not	Applicable.		

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT	:	Battery Charger
Model Number	:	NBW54D601D3D01
Trade Mark	:	N/A
Power Supply For Test	:	AC 230V 50Hz, AC 120V 60Hz
Operate Mode	:	Full load, Half load, No load
EUT Category	:	□ Category I ☑ Category II □ Category III □ Category IV □ Category V
Highest clock frequency	:	☑ F≤15MHz, □ 15MHz <f≤200mhz, f="" □="">200MHz</f≤200mhz,>
Applicant	:	Shenzhen AMC Technology Co., Ltd.
Address	:	(1-7 / F) 101, Building 3, No. 11, Baolong First Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, Guangdong, P.R. China.
Manufacturer	:	Shenzhen AMC Technology Co., Ltd.
Address	:	(1-7 / F) 101, Building 3, No. 11, Baolong First Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, Guangdong, P.R. China.
Factory	:	Shenzhen AMC Technology Co., Ltd.
Address	:	(1-7 / F) 101, Building 3, No. 11, Baolong First Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, Guangdong, P.R. China.
Date of sample received	:	November 27, 2023
Date of Test	:	November 27, 2023 to February 02, 2024

2.2. Description of Test Facility

Site Description EMC Lab	Accredited by CNAS, 2020.08.27 The certificate is valid until 2024.07.05 The Laboratory has been assessed and proved to be in compliance with CNAS/CL01:2018 The Certificate Registration Number is L3150	
Name of Firm Site Location	EMTEK(DONGGUAN) CO., LTD. -1&2/F.,Building 2, Zone A, Zhongda Marine Biotechnology Reserch and Development Base, No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China	

2.3. Description of Support Device

The EUT was tested toget	her with the following access	sories:	
Kind of Equipment	Manufacturer	Туре	SN
1	1	1	1

2.4. Measurement Uncertainty

Test Item		Uncertainty
Conducted Emission	:	2.08dB(9k~150kHz Conduction 1#) 2.42dB(150k-30MHz Conduction 1#)
Radiated Emission (3m Chamber)	:	3.32dB (30M~1GHz Polarize: H) 3.34dB (30M~1GHz Polarize: V)
Uncertainty for Flicker test	:	0.07%
Uncertainty for Harmonic test	÷	1.8%
Uncertainty for test site temperature and humidity	:	0.6℃ 4%

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1. For Conducted Disturbances at the AC mains port

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	1.	EMI Test Receiver	Rohde&Schwarz	ESCI	100137	2023/5/11	1 Year
Ī	2.	AMN	Rohde&Schwarz	ENV216	101209	2023/5/11	1 Year

3.2. For Radiated Emission

Item	Equipment	Equipment Manufacturer		Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde&Schwarz	ESCI	101415 2023/5/11		1 Year
2.	Bi-log Hybrid Antenna	Schwarzbeck	VULB9163 141		2023/5/15	1 Year
3.	Pre-Amplifie	HP	8447F	8447F OPTH64		1 Year
4.	Signal Analyzer	R&S	FSV30	103039	2023/5/11	1 Year
5.	Horn Antenna	Schwarzbeck	BBHA9120D	1272	2023/5/15	1 Year
6.	Pre-Amplifie	LUNAR EM	PM1-18-40	J101000000 81	2023/5/11	1 Year

3.3. For Harmonic / Flicker Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	AC variable frequency power supply	Teseq	100-CTS-230-TE SQ	1804A03259	2023/5/11	1 Year
2.	Harmonic current and voltage fluctuation analyzer	Teseq	5001IX-CTS-400- SCH	1805A03008	2023/5/11	1 Year

3.4. For Electrostatic Discharge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ESD Tester	TESEQ	NSG 437	409	2023/5/15	1 Year

3.5. For Fast Transients Test

Item	Equipment	Manufacturer	Manufacturer Model No.		Last Cal.	Cal. Interval
1.	EMS comprehensive tester	HTEC	HCOMPACT7	190305	2023/5/11	1 Year
2.	Capacitive Coupling Clamp	RMTEST	HFK	0605-10	2023/5/11	1 Year

3.6. For Surge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMS comprehensive tester	HTEC	HCOMPACT7	190305	2023/5/11	1 Year

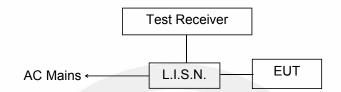
3.7. For Injected Currents Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Signal generator	Rohde& Schwarz	SMB100A	103042	2023/5/11	1 Year	
2.	Single channel power meter	/er Rohde& Schwarz NRVS 101761		2023/5/11	1 Year		
3.	6 db attenuator	AR-WORLDWIDE	6dB/50FH-006-10 0	324011	2023/5/11	1 Year	
4.	CDN	SKET	CDN M2+M3	204303	2023/5/11	1 Year	
5.	Power amplifier	BONN Elektronik	BSA 1515-25	97483	2023/5/11	1 Year	

3.8. For Voltage Dips and Interruptions Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMS comprehensive tester	HTEC	HCOMPACT7	190305	2023/5/11	1 Year
2.	Dips module	HTEC	HV1P16T	190302	2023/5/11	1 Year

4. CONDUCTED DISTURBANCES AT THE AC MAINS PORT


4.1. Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT:Battery Charger)

4.1.2.Block Diagram of Test Setup

(EUT: Battery Charger)

4.2. Measurement Standard and Limits

4.2.1.Standard:

EN IEC 55014-1: 2021

4.2.2.Limits

Frequency	Limit ((dBµV)	
(MHz)	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66 ~ 56 *	59 ~ 46 *	
0.50 ~ 5.00	56	46	
5.00 ~ 30.00	60	50	

1. At the transition frequency the lower limit applies.

2. * decreasing linearly with logarithm of the frequency.

4.3. EUT Configuration on Measurement

The following equipments are installed on Conducted Emission Measurement to meet EN IEC 55014-1 requirements and operating in a manner which tends to maximize its emission characteristics in a normal application.

EUT	:	Battery Charger
Model Number	:	NBW54D601D3D01

4.4. Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 4.1.

Step 2: Turn on the power of all equipments.

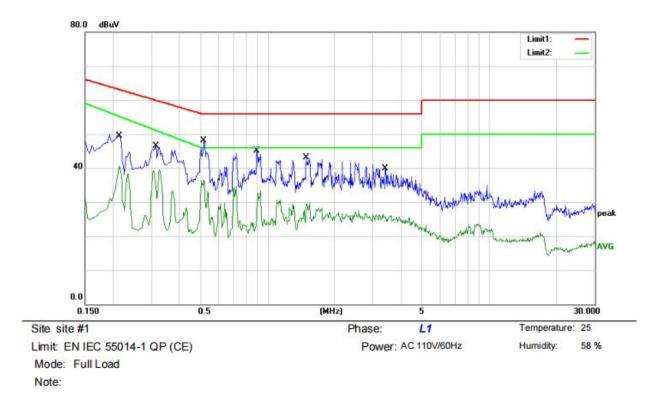
Step 3: Let the EUT work in measuring mode (Full load, Half load, No load) and measure them.

4.5. Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground and connected to the AC mains through a Line Impedance Stabilization Network (L.I.S.N.). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission according to the EN IEC 55014-1 regulations during conducted emission measurement.

The bandwidth of the test receiver (ESCI) is set at 200Hz in 9KHz~150KHz range and 9KHz in 150KHz~30MHz range.

The frequency range from 150KHz to 30MHz is checked.

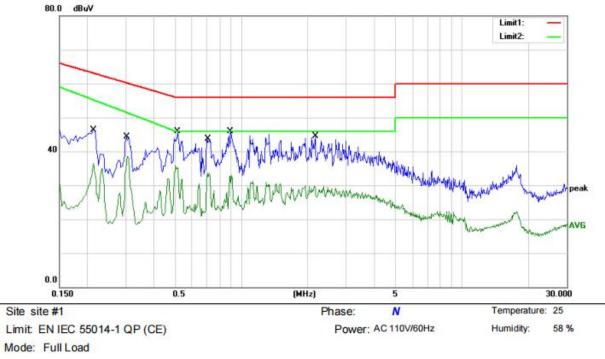

4.6. Measurement Results

PASS.

The frequency range from 150KHz to 30MHz is investigated.

All the modes were tested and the worst data are attached the following pages.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2140	32.37	17.04	49.41	63.05	-13.64	QP	
2		0.2140	23.64	17.04	40.68	55.16	-14.48	AVG	
3		0.3140	29.40	17.10	46.50	59.86	-13.36	QP	
4		0.3140	22.30	17.10	39.40	51.02	-11.62	AVG	
5	*	0.5180	31.02	17.10	48.12	56.00	-7.88	QP	
6		0.5180	19.44	17.10	36.54	46.00	-9.46	AVG	
7		0.8980	28.13	17.02	45.15	56.00	-10.85	QP	
8		0.8980	16.49	17.02	33.51	46.00	-12.49	AVG	
9		1.5020	25.98	17.07	43.05	56.00	-12.95	QP	
10	-	1.5020	12.88	17.07	29.95	46.00	-16.05	AVG	
11		3.4100	22.80	17.01	39.81	56.00	-16.19	QP	
12		3.4100	9.44	17.01	26.45	46.00	-19.55	AVG	


*:Maximum data x:Over limit I:over margin Comment: Factor build in receiver. Operator: Jayce

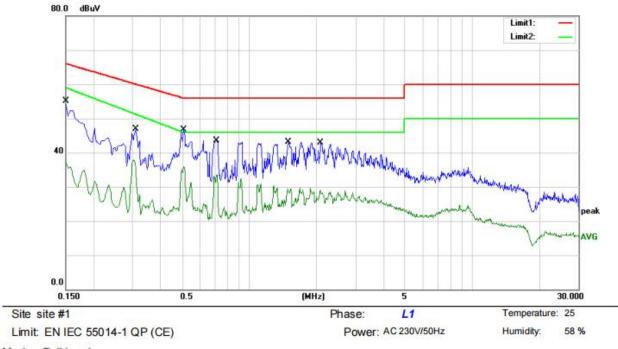
Remark:

1. Measurement (dB µ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB µ V)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2140	29.26	17.04	46.30	63.05	-16.75	QP	
2		0.2140	19.51	17.04	36.55	55.16	-18.61	AVG	
3		0.3020	27.27	17.11	44.38	60.19	-15.81	QP	
4		0.3020	21.45	17.11	38.56	51.44	-12.88	AVG	
5		0.5180	28.78	17.10	45.88	56.00	-10.12	QP	
6	*	0.5180	18.87	17.10	35.97	46.00	-10.03	AVG	
7		0.7060	26.78	17.01	43.79	56.00	-12.21	QP	
8		0.7060	16.70	17.01	33.71	46.00	-12.29	AVG	
9		0.8980	28.89	17.02	45.91	56.00	-10.09	QP	
10		0.8980	15.88	17.02	32.90	46.00	-13.10	AVG	
11		2.1700	27.33	17.09	44.42	56.00	-11.58	QP	
12		2.1700	12.66	17.09	29.75	46.00	-16.25	AVG	


*:Maximum data x:Over limit I:over margin Comment: Factor build in receiver. Operator: Jayce

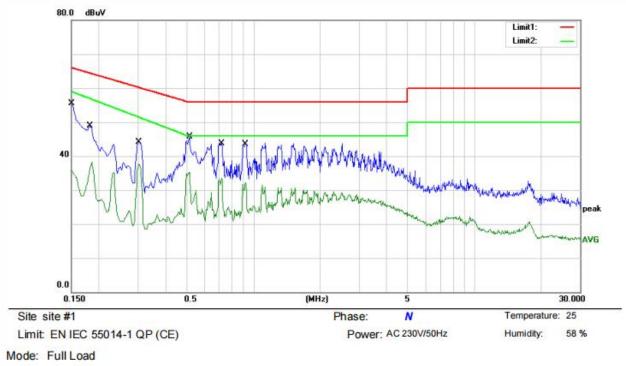
Remark:

1. Measurement (dB µ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB µ V)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

Mode: Full Load Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	38.14	17.06	55.20	66.00	-10.80	QP	
2		0.1500	20.52	17.06	37.58	59.00	-21.42	AVG	
3		0.3100	29.83	17.10	46.93	59.97	-13.04	QP	
4		0.3100	20.71	17.10	37.81	51.16	-13.35	AVG	
5	*	0.5100	29.53	17.11	46.64	56.00	-9.36	QP	
6		0.5100	18.72	17.11	35.83	46.00	-10.17	AVG	
7		0.7140	26.49	17.01	43.50	56.00	-12.50	QP	
8		0.7140	16.56	17.01	33.57	46.00	-12.43	AVG	
9		1.5020	26.02	17.07	43.09	56.00	-12.91	QP	
10		1.5020	12.43	17.07	29.50	46.00	-16.50	AVG	
11		2.1060	25.62	17.10	42.72	56.00	-13.28	QP	
12		2.1060	12.00	17.10	29.10	46.00	-16.90	AVG	


*:Maximum data x:Over limit 1:over margin Comment: Factor build in receiver. Operator: Jayce

Remark:

1. Measurement (dB µ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB µ V)

2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	38.46	17.06	55.52	66.00	-10.48	QP	
2	0.1500	18.94	17.06	36.00	59.00	-23.00	AVG	
3	0.1820	31.81	17.04	48.85	64.39	-15.54	QP	
4	0.1820	21.24	17.04	38.28	56.91	-18.63	AVG	
5	0.3020	26.90	17.11	44.01	60.19	-16.18	QP	
6	0.3020	20.57	17.11	37.68	51.44	-13.76	AVG	
7 *	0.5140	28.60	17.10	45.70	56.00	-10.30	QP	
8	0.5140	18.20	17.10	35.30	46.00	-10.70	AVG	
9	0.7180	26.76	17.01	43.77	56.00	-12.23	QP	
10	0.7180	16.46	17.01	33.47	46.00	-12.53	AVG	
11	0.9220	26.51	17.02	43.53	56.00	-12.47	QP	
12	0.9220	15.28	17.02	32.30	46.00	-13.70	AVG	

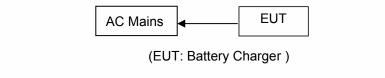
*:Maximum data x:Over limit !:over margin

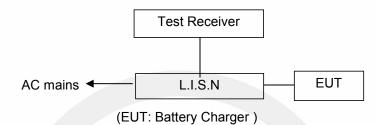
rgin Comment: Factor build in receiver.

Operator: Jayce

Remark:

1. Measurement (dB µ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB µ V)


2. Over (dB) = Measurement (dB μ V) - Limit (dB μ V)


5. DISCONTINUOUS DISTURBANCE

5.1. Block Diagram of Test Setup

5.1.1.Block diagram of connection between the EUT and simulators

5.1.2.Block Diagram of Test Setup

5.2. Measurement Standard and limit

5.2.1.Test Standard

EN IEC 55014-1: 2021

5.2.2.Test Limit

According to standard EN IEC 55014-1, if click rate (N) less 5/min and the time of this Discontinuous Disturbance does not exceed 10ms, then the limit value are omitted.

5.3. EUT Configuration

The configuration of EUT is same as Section 5.1.

5.4. Operating Condition of EUT

Step 1: Setup the EUT as shown Section 5.1.

Step 2: Turn on the power of all equipments.

Step 3: After that, let EUT work in test mode (/) and measure it.

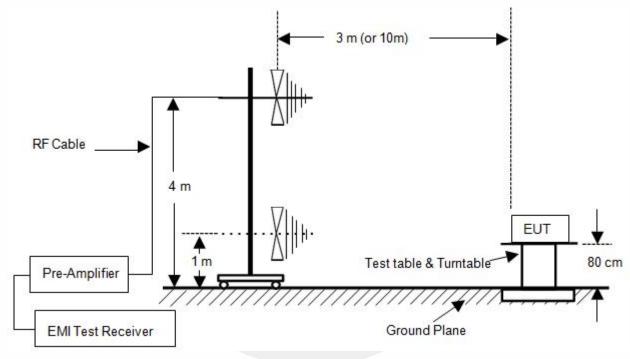
5.5. Test Procedure

This test is done when switch operations in thermostatically controlled appliances, automatic program controlled machines and other electrically controlled or operated appliances may generate Discontinuous Disturbance (Click). The measurement of disturbance shall be performed at the following restricted number of frequencies: 150KHz, 500KHz, 1.4MHz and 30MHz. At each frequency, for appliances which stop automatically, duration of the minimum number of complete programs necessary to produce 40 counted clicks or, where relevant, 40 counted clicks have not been produced, the test is stopped at the end of the program in course. The relevant click rate N. The appliance under test shall be deemed to comply with the limit if not more than a quarter of the number of the counted click registered during the observation time.

5.6. Test Results

N/A.

6. RADIATED EMISSION (UP TO 1GHZ)


6.1. Block Diagram of Test

6.1.1.Block diagram of connection between the EUT and simulators

6.1.2.Block diagram of test setup (In chamber)

(EUT: Battery Charger)

6.2. Measurement Standard and limit

6.2.1.Test Standard

EN IEC 55014-1: 2021

6.2.2.Test Limits

All emanations from a device or system shall not exceed the level of field strengths specified below:

Table 9

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	(dBmV/m)
30 ~ 230	3	40
230 ~ 1000	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

6.3. EUT Configuration on Test

The EN IEC 55014 regulations test method must be used to find the maximum emission during Radiated Emission measurement.

EUT:Battery ChargerModel Number:NBW54D601D3D01

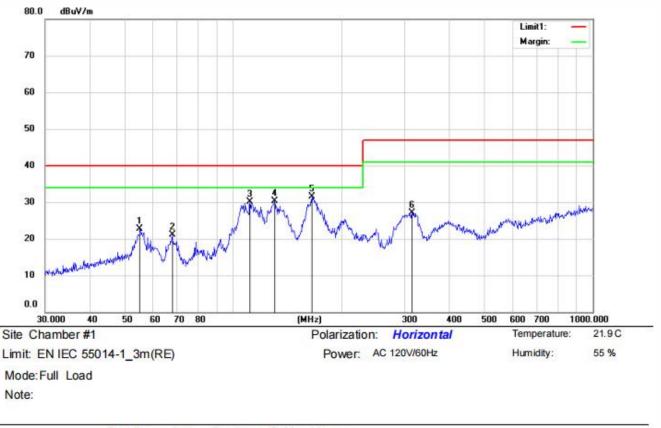
6.4. Operating Condition of EUT

Step 1: Turn on the power.

Step 2: Let the EUT work in test mode (Full load, Half load, No load) and measure it.

6.5. Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meter to find out the maximum emission level. Bilog antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarizations of the antenna are set on test.

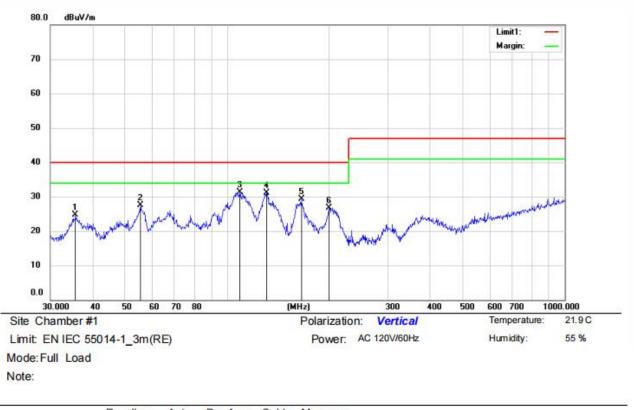

The bandwidth of the Receiver (ESCI) is set at 120kHz.

6.6. Test Results

Pass.

All the modes were tested and the worst data are attached the following pages.

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1		55.0274	38.84	13.49	30.5	0.92	22.75	40.00	-17.25	QP			
2		67.6751	40.17	10.36	30.54	1.1	21.09	40.00	-18.91	QP			
3		111.3468	48.51	11.26	30.83	1.16	30.10	40.00	- <mark>9.90</mark>	QP			
4		130.3790	51.34	8.38	30.73	1.3	30.29	40.00	-9.71	QP			
5	*	165.4866	51.38	9.23	30.54	1.52	31.59	40.00	-8.41	QP			
6		314.3765	40.50	14.22	29.83	2.22	27.11	47.00	-19.89	QP			

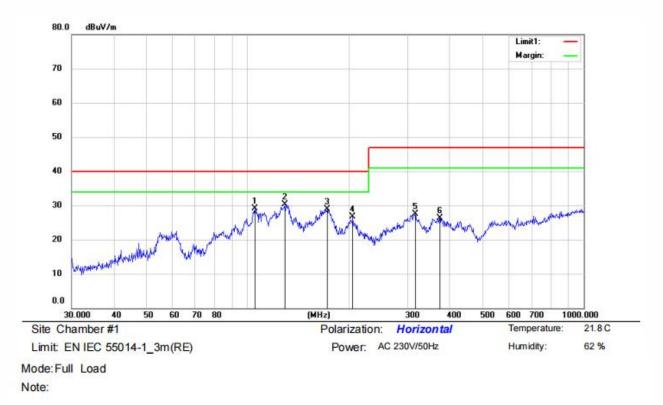

*:Maximum data x:Over limit !:over margin

Operator: Ccyf

Remark:

1. Measurement (dB μ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB μ V/m) 2. Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
	35.6240	42.89	11.67	30.54	0.6	24.62	40.00	-15.38	QP			
_	55.4147	43.66	13.4	30.5	0.93	27.49	40.00	-12.51	QP			
*	109.4116	49.59	11.5	30.84	1.15	31.40	40.00	-8.60	QP			
	130.8370	52.14	8.37	30.73	1.3	31.08	40.00	-8.92	QP			
	166.0680	48.97	9.26	30.54	1.52	29.21	40.00	-10.79	QP			
	200.6880	43.76	11.62	30.36	1.71	26.73	40.00	-13.27	QP			
	•	MHz 35.6240 55.4147	Mk. Freq. Level MHz dBuV 35.6240 42.89 55.4147 43.66 * 109.4116 49.59 130.8370 52.14 166.0680 48.97	Mk. Freq. Level Factor MHz dBuV dB/m 35.6240 42.89 11.67 55.4147 43.66 13.4 * 109.4116 49.59 11.5 130.8370 52.14 8.37 166.0680 48.97 9.26	Mk. Freq. Level Factor Gain MHz dBuV dB/m dB 35.6240 42.89 11.67 30.54 55.4147 43.66 13.4 30.5 * 109.4116 49.59 11.5 30.84 130.8370 52.14 8.37 30.73 166.0680 48.97 9.26 30.54	Mk. Freq. Level Factor Gain loss MHz dBuV dB/m dB dB 35.6240 42.89 11.67 30.54 0.6 55.4147 43.66 13.4 30.5 0.93 * 109.4116 49.59 11.5 30.84 1.15 130.8370 52.14 8.37 30.73 1.3 166.0680 48.97 9.26 30.54 1.52	Mk. Freq. Level Factor Gain loss ment MHz dBuV dB/m dB dB dBuV/m 35.6240 42.89 11.67 30.54 0.6 24.62 55.4147 43.66 13.4 30.5 0.93 27.49 * 109.4116 49.59 11.5 30.84 1.15 31.40 130.8370 52.14 8.37 30.73 1.3 31.08 166.0680 48.97 9.26 30.54 1.52 29.21	Mk. Freq. Level Factor Gain loss ment Limit MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 35.6240 42.89 11.67 30.54 0.6 24.62 40.00 55.4147 43.66 13.4 30.5 0.93 27.49 40.00 * 109.4116 49.59 11.5 30.84 1.15 31.40 40.00 130.8370 52.14 8.37 30.73 1.3 31.08 40.00 166.0680 48.97 9.26 30.54 1.52 29.21 40.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB 35.6240 42.89 11.67 30.54 0.6 24.62 40.00 -15.38 55.4147 43.66 13.4 30.5 0.93 27.49 40.00 -12.51 * 109.4116 49.59 11.5 30.84 1.15 31.40 40.00 -8.60 130.8370 52.14 8.37 30.73 1.3 31.08 40.00 -8.92 166.0680 48.97 9.26 30.54 1.52 29.21 40.00 -10.79	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dB dBuV/m dB Detector 35.6240 42.89 11.67 30.54 0.6 24.62 40.00 -15.38 QP 55.4147 43.66 13.4 30.5 0.93 27.49 40.00 -12.51 QP * 109.4116 49.59 11.5 30.84 1.15 31.40 40.00 -8.60 QP 130.8370 52.14 8.37 30.73 1.3 31.08 40.00 -8.92 QP 166.0680 48.97 9.26 30.54 1.52 29.21 40.00 -10.79 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector cm 35.6240 42.89 11.67 30.54 0.6 24.62 40.00 -15.38 QP - 55.4147 43.66 13.4 30.5 0.93 27.49 40.00 -12.51 QP - * 109.4116 49.59 11.5 30.84 1.15 31.40 40.00 -8.60 QP - 130.8370 52.14 8.37 30.73 1.3 31.08 40.00 -8.92 QP 166.0680 48.97 9.26 30.54 1.52 29.21 40.00 -10.79 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI Degree MHz dBuV dB/m dB dB dB dBuV/m dB Detector cm deg. 35.6240 42.89 11.67 30.54 0.6 24.62 40.00 -15.38 QP - - - deg. 55.4147 43.66 13.4 30.5 0.93 27.49 40.00 -12.51 QP -

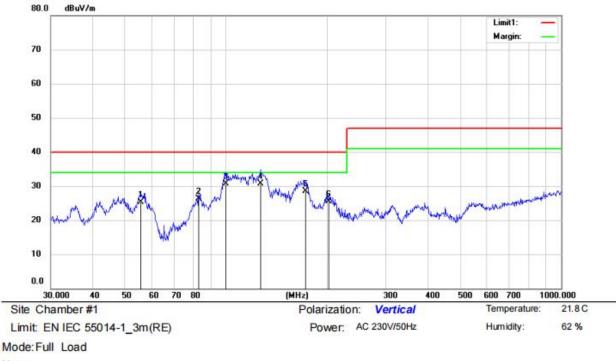

*:Maximum data x:Over limit !:over margin

Operator: Ccyf

Remark:

1. Measurement (dB µ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB µ V/m) 2. Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1	33	105.2716	47.41	11.5	30.86	1.12	29.17	40.00	-10.83	QP			
2	*	129.0146	51.17	8.54	30.74	1.29	30.26	40.00	-9.74	QP			
3	18	172.5987	48.37	9.55	30.51	1.56	28.97	40.00	-11.03	QP			
4	3	205.6750	43.46	11.76	30.33	1.75	26.64	40.00	-13.36	QP			
5	8	315.4806	40.78	14.24	29.83	2.23	27.42	47.00	-19.58	QP			
6	8	373.3110	37.52	15.61	29.82	2.99	26.30	47.00	-20.70	QP			


*:Maximum data x:Over limit !:over margin

Operator: Ccyf

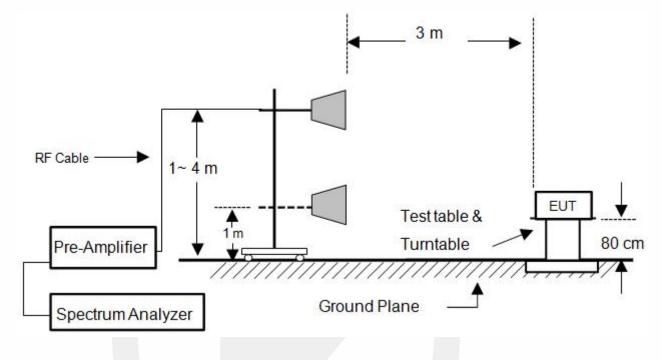
Remark:

- 1. Measurement (dB µ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB µ V/m)
- 2. Over (dB) = Measurement (dB μ V/m) Limit (dB μ V/m)

Note:

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit .	Over		н	Degree	
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1		55.8046	41.46	13.31	30.5	0.94	25.21	40.00	-14.79	QP			
2		82.9384	47.47	8.31	30.63	1.06	26.21	40.00	-13.79	QP			
3		99.8777	48.92	11.58	30.89	1.08	30.69	40.00	-9.31	QP			
4	*	126.7723	51.43	8.85	30.75	1.27	30.80	40.00	-9.20	QP			
5		172.5987	47.87	9.55	30.51	1.56	28.47	40.00	-11.53	QP			
6		202.8103	42.36	11.68	30.35	1.72	25.41	40.00	-14.59	QP			

*:Maximum data x:Over limit !:over margin


Operator: Ccyf

Remark:

Measurement (dB μ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB μ V/m)
 Over (dB) = Measurement (dB μ V/m) - Limit (dB μ V/m)

7. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

7.1. Block Diagram of Test Setup

7.2. Radiated Limit

Table 11

Frequency range		Measu	rement	Class B limits
(MHz)	Facility	Distance (m)	Detector type/ bandwidth	dB(µ V/m)
1000 to 3000				50
3000 to 6000	FOOATO	3	Average / 1 MHz	54
1000 to 3000	FSOATS	3	Dook /1 MHT	70
3000 to 6000			Peak /1 MHz	74

Note: The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to

5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

东莞市信测科技有限公司 EMTEK (Dongguan) Co., Ltd. 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-lechnology Industrial Development Zone, Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

7.3. Test Procedure

The EUT was placed on a non-conductive table whose total height equaled 80cm. All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

The EUT was set 3 meters away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

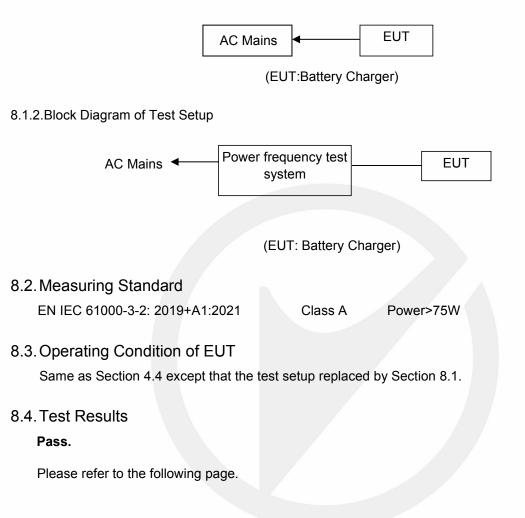
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz.

Test results were obtained from the following equation: Emission level ($dB\mu V/m$) = Antenna Factor -Amp Factor +Cable Loss + Reading Margin (dB) = Emission Level ($dB\mu V/m$) - Limit ($dB\mu V/m$)

7.4. Measuring Results

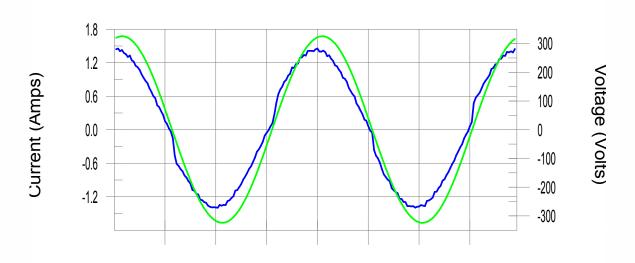
N/A.


The highest frequency of the internal sources of the EUT is less than 108 MHz

8. HARMONIC CURRENT MEASUREMENT

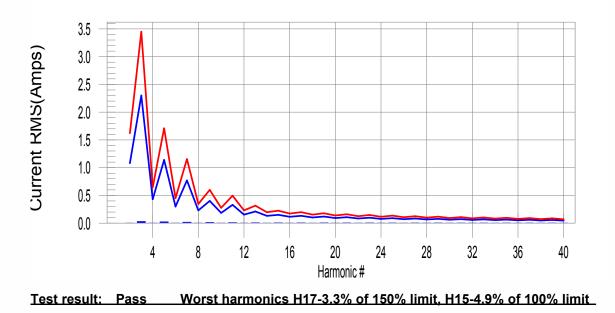
8.1. Block Diagram of Test Setup

8.1.1.Block Diagram of connection between the EUT and simulators



Harmonics – Class-A per Ed. Ed. 5.0 (2018)(Run time)

EUT: NBW54D601D3D01Tested by: ChenliTest category: Class-A per Ed. 5.0 (2018) (European limits)Test Margin: 100Test date: 2024/1/18Start time: 15:05:03End time: 15:07:44Test duration (min): 2.5Data file name: H-000073.cts_dataComment: Full loadCustomer: Customer information


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

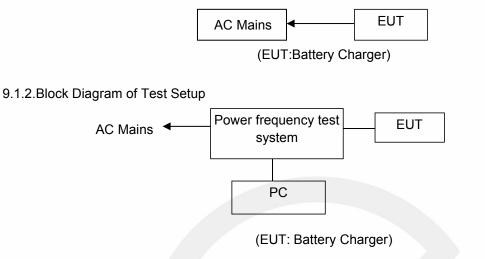
Harmonics and Class A limit line

European Limits

Current Test Result Summary (Run time)

Test ca Test da Test du Comme	EUT: NBW54D601D3D01 Tested by: Chenli Test category: Class-A per Ed. 5.0 (2018) (European limits) Test Margin: 100 Test date: 2024/1/18 Start time: 15:05:03 End time: 15:07:44 Test duration (min): 2.5 Data file name: H-000073.cts_data Comment: Full load Customer: Customer information						
Test Re THC(A)	esult: Pass : 0.051	Sour I-THD(%): 5.	ce qualifica 0	tion: Normal POHC(A): 0.01 [·]	1 PC	OHC Limit(A)	: 0.251
Highes	t parameter va		test:				
	V_RMS (Volts			Frequency(Hz)			
	I_Peak (Amps			I_RMS (Amps)			
	I_Fund (Amps			Crest Factor:	1.542		
	Power (Watts): 227.5		Power Factor:	0.982		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.001	1.080	N/A	0.001	1.620	N/A	Pass
3	0.031	2.300	1.3	0.032	3.450	0.9	Pass
4	0.000	0.430	N/A	0.001	0.645	N/A	Pass
5	0.026	1.140	2.2	0.026	1.710	1.5	Pass
6	0.000	0.300	N/A	0.001	0.450	N/A	Pass
7	0.018	0.770	2.3	0.018	1.155	1.6	Pass
8	0.000	0.230	N/A	0.001	0.345	N/A	Pass
9	0.013	0.400	3.3	0.014	0.600	2.3	Pass
10	0.000	0.184	N/A	0.001	0.276	N/A	Pass
11	0.011	0.330	3.2	0.011	0.495	2.2	Pass
12	0.000	0.153	N/A	0.001	0.230	N/A	Pass
13	0.009	0.210	4.2	0.009	0.315	2.9	Pass
14 15	0.000 0.007	0.131 0.150	N/A 4.9	0.001 0.008	0.197 0.225	N/A 3.3	Pass Pass
15	0.007	0.150	4.9 N/A	0.008	0.225	3.3 N/A	Pass
10	0.006	0.132	4.8	0.007	0.173	3.3	Pass
18	0.000	0.102	4.0 N/A	0.007	0.153	N/A	Pass
19	0.006	0.118	N/A	0.006	0.178	N/A	Pass
20	0.000	0.092	N/A	0.001	0.138	N/A	Pass
21	0.005	0.107	N/A	0.005	0.161	N/A	Pass
22	0.000	0.084	N/A	0.001	0.125	N/A	Pass
23	0.004	0.098	N/A	0.005	0.147	N/A	Pass
24	0.000	0.077	N/A	0.001	0.115	N/A	Pass
25	0.004	0.090	N/A	0.004	0.135	N/A	Pass
26	0.001	0.071	N/A	0.001	0.107	N/A	Pass
27	0.004	0.083	N/A	0.004	0.125	N/A	Pass
28	0.002	0.066	N/A	0.002	0.099	N/A	Pass
29	0.003	0.078	N/A	0.003	0.116	N/A	Pass
30	0.001	0.061	N/A	0.001	0.092	N/A	Pass
31	0.003	0.073	N/A	0.003	0.109	N/A	Pass
32	0.002	0.058	N/A	0.002	0.086	N/A	Pass
33	0.003	0.068	N/A	0.003	0.102	N/A	Pass
34	0.001	0.054	N/A	0.001	0.081	N/A	Pass
35	0.002	0.064	N/A	0.003	0.096	N/A	Pass
36	0.000	0.051	N/A	0.000	0.077	N/A	Pass
37	0.002	0.061	N/A	0.002	0.091	N/A	Pass
38	0.000	0.048	N/A	0.000	0.073	N/A	Pass
39 40	0.002 0.000	0.058 0.046	N/A N/A	0.002 0.001	0.087 0.069	N/A	Pass
40	0.000	0.046	IN/A	0.001	0.069	N/A	Pass

Voltage Source Verification Data (Run time)


EUT: NBW54D601D3D0 Test category: Class-A Test date: 2024/1/18 Test duration (min): 2.5 Comment: Full load Customer: Customer	per Ed. 5.0 (2018 Start time	8) (European limi 9: 15:05:03 name: H-000073.	End time	y: Chenli gin: 100 : 15:07:44
Test Result: Pass	Source qua	lification: Norma	al	
Highest parameter valu Voltage (Vrms): I_Peak (Amps):	229.85	Frequency I_RMS (An		
I_Fund (Amps): Power (Watts):	1.006	Crest Fact Power Fac	or: 1.542	
Harm# Harmonics	s V-rms Lim	itV-rms % c	of Limit S	Status
2	0.017	0.460	3.66	ок
3	0.385	2.069	18.61	ÖK
4	0.014	0.460	3.01	ÖK
5	0.016	0.919	1.79	ÖK
5 6	0.013	0.460	2.94	OK
7	0.021	0.689	3.03	OK
8	0.013	0.460	2.82	OK
9	0.013	0.460	2.82	OK
10	0.011	0.460	2.33	OK
11	0.006	0.230	2.51	OK
12	0.014	0.230	5.89	OK
13	0.008	0.230	3.34	ÖK
14	0.004	0.230	1.95	ÖK
15	0.009	0.230	3.81	ÖK
16	0.005	0.230	2.25	OK
17	0.006	0.230	2.51	OK
18	0.007	0.230	3.19	OK
19	0.009	0.230	3.75	OK
20	0.014	0.230	6.29	OK
20	0.006	0.230	2.65	OK
22	0.005	0.230	2.05	OK
22 23				OK
23	0.006	0.230	2.65	OK
24 25	0.004 0.007	0.230 0.230	1.90	OK
26	0.003	0.230	2.84 1.09	OK
20 27	0.003	0.230	2.45	OK
28	0.002	0.230	2.45 1.07	OK
20	0.002	0.230	1.40	OK
30	0.003	0.230	1.30	OK
31	0.005	0.230	2.17	OK
32	0.003	0.230	1.23	OK
33	0.003	0.230	1.16	OK
34	0.003	0.230	1.03	OK
34 35	0.002	0.230	2.33	OK
36	0.003	0.230	2.33 1.22	OK
30 37	0.003	0.230	1.22	OK
37 38	0.003	0.230	1.70	OK
39 40	0.007	0.230	2.88	OK
40	0.012	0.230	5.18	OK

9. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT

9.1. Block Diagram of Test Setup

9.1.1.Block Diagram of connection between the EUT and simulators

9.2. Measuring Standard

EN 61000-3-3:2013+A2:2021

9.3. Operating Condition of EUT

Step 1: Setup the EUT as shown Section 9.1.

Step 2: Turn on the power of all equipments.

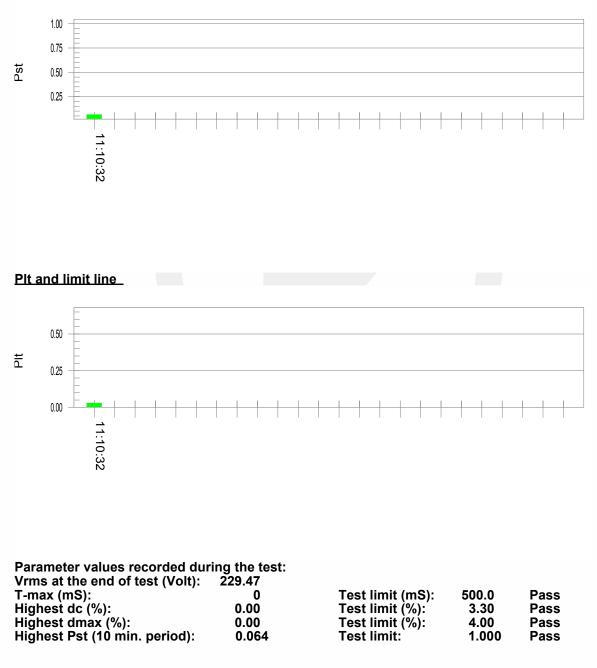
Step 3: Let EUT work in test mode (Full load) and measure it.

9.4. Test Results

PASS.

Please refer to the following page.

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)


EUT: NBW54D604D0DTested by: chenliTest category: All parameters (European limits)Test Margin: 100Test date: 2023-12-29Start time: 11:00:11End time: 11:10:38Test duration (min): 10Data file name: F-001572.cts_dataComment: Full loadCustomer: Customer information

Test Result: Pass

Status: Test Completed

Psti and limit line

European<u>Limits</u>

10. IMMUNITY GENERAL PERFORMANCE CRITERIA DESCRIPTION

General performance criteria are defined in EN IEC 55014-2 clause 6. These criteria shall be used during the testing of primary functions where no relevant annex is applicable.

When assessing the impact of a disturbance on a function, the assessment should take into consideration the function's performance prior to the application of the disturbance and only identify as failures those changes in performance that are a result of the disturbance.

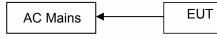
EN IEC 55014-2:

Performance criterion A: The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

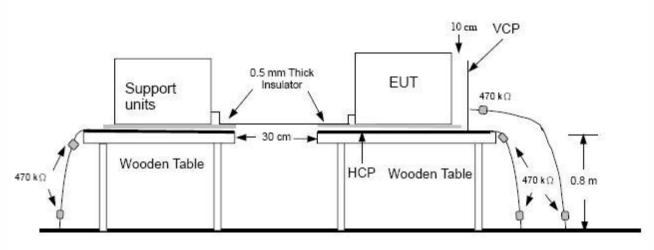
Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however no change of actual operating state or stored data is allowed to persist after the test. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is self₁ recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

The selection, the specification of functions, and the permissible degradation is left to the responsibility of the manufacturer.


东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongquan, Guangdong,China Http://www.emtek.com.cn
Emter Kong Avenue,Songshanhu High-technology Industrial Development Zone,
Dongquan, Guangdong,China Http://www.emtek.com.cn

11. ELECTROSTATIC DISCHARGE TEST


11.1.Block Diagram of Test Setup

11.1.1.Block Diagram of connection between the EUT and simulators

11.1.2.Block Diagram of ESD Test Setup

Ground Reference Plane

(EUT:Battery Charger)

11.2.Test Standard

```
EN IEC 55014-2: 2021
(IEC 61000-4-2:2008 (Severity Level: 2 / Contact Discharge: ±4KV; Severity Level: 3 / Air Discharge: ±8KV))
```

11.3. Severity Levels and Performance Criterion

11.3.1.Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

Performance criterion: B

11.4.EUT Configuration

The configuration of EUT is listed in Section 11.1

11.5. Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 11.1.

Step 2: Turn on the power of all equipments.

Step 3: Let the EUT work in test mode (Full load, Half load, No load) and measure them.

11.6.Test Procedure

11.6.1.Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

11.6.2.Contact Discharge

All the procedure shall be same as Section 10.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

11.6.3. Indirect discharge for horizontal coupling plane

At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

11.6.4.Indirect discharge for vertical coupling plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

11.7.Test Results

PASS.

Please refer to the following page.

 东莞市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

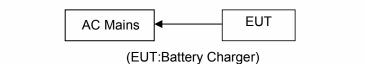
 EMTEK (Dongguan) Co., Ltd.

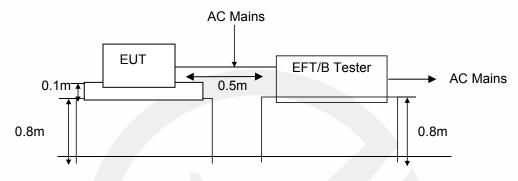
 Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongquan, Guanadong,China Http://www.emtek.com.cn

Electrostatic Discharge Test Results EMTEK(DONGGUAN) CO., LTD.

Applicant : Shenzhen AMC Technology Co., Ltd.		Test Date :	December 25, 2023
EUT : Battery Charger		Temperature :	19.8 ℃
M/N : NBW54D601D3D01		Humidity :	52.7%
Power Supply : AC 230V 50Hz, AC 120V 60Hz		Test Engineer:	Chen Li
Test Mode : Full load, Half load, No load		Criterion :	В
		Atmospheric Pres	ssure: 101kpa
Air Discharge: ±2,4,8KVContact Discharge: ±4KV# For each point positive 1	0 times and r	negative 10 times	
Location	A-Air	Kind Discharge act Discharge	Result
НСР	Contac	ct Discharge	PASS
VCP	Contac	ct Discharge	PASS
Conductive parts	Contac	ct Discharge	PASS
Non-conductive enclosure & Gap	Air [Discharge	PASS
Note : No observable change.			

Discharge should be considered on Contact and Air and Horizontal Coupling Plane (HCP) and Vertical Coupling Plane (VCP).


东莞市信测科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层:第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -1&2/F ., Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn


12. FAST TRANSIENTS TEST

12.1.Block Diagram of Test Setup

12.1.1.Block Diagram of connection between the EUT and simulators

12.1.2.Block Diagram of EFT Test Setup

(EUT:Battery Charger)

12.2.Test Standard

EN IEC 55014-2: 2021 (IEC 61000-4-4:2012, Severity Level, Level 2: 1KV)

12.3. Severity Levels and Performance Criterion

12.3.1.Severity level

Level	On pov	ver port, PE	On I/O (Input/Output) Signal data and control ports	
	Voltage peak KV	Repetition rate KHz	Voltage peak KV	Repetition rate KHz
1.	0.5 KV	5 or 100	0.25 KV	5 or 100
2.	1 KV	5 or 100	0.5 KV	5 or 100
3.	2 KV	5 or 100	1 KV	5 or 100
4.	4 KV	5 or 100	2 KV	5 or 100
Х	Special	Special	Special	Special

NOTE 2 With some products, there may be no clear distinction, between power ports and I/O ports, in which case it is up to product committees to make this determination for test purposes.

"X" is an open level. The level has to be specified in the dedicated equipment specification.

Performance criterion: B

 东莞市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongquan, Guanadong,China Http://www.emtek.com.cn

12.4.EUT Configuration

The configurations of EUT are listed in Section 12.1.

12.5. Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 12.1.

Step 2: Turn on the power of all equipments.

Step 3: Let the EUT work in test mode (Full load, Half load, No load) and measure them.

12.6.Test Procedure

The EUT is put on the table which is 0.1 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

For signal lines and control lines ports:

No I/O ports. It's unnecessary to test.

For DC output line ports:

No DC ports. It's unnecessary to test.

12.7.Test Results

PASS.

Please refer to the following page.

东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongquan, Guangdong,China Http://www.emtek.com.cn

1

Fast Transients Test Results EMTEK(DONGGUAN) CO., LTD.

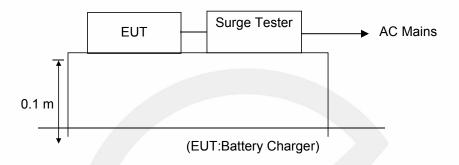
Applicant : <u>Shenzhen A</u>	MC Technology Co., Ltd.		
EUT : <u>Battery Cha</u>	arger		
M/N : <u>NBW54D601</u>	<u>D3D01</u>		
Power Supply: AC 23	30V 50Hz, AC 120V 60Hz		
Criterion : B			
Ambient Condition :	19.8 °C	51.8% RH	
Operation Mode : Full load	l, Half load, No load		
Line : 🛛 🛛 🛛 🛛 🖂		Line : 🗌 Signal	□ I/O Cable
Coupling : 🛛 Direct		Coupling : 🗌 Capaciti	ve
Test Time : 120s			A
Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
Ν	1KV	PASS	PASS
L, N	1KV	PASS	PASS
Note : No observable c	hange.	· · ·	

 东莞市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn

13. SURGE TEST


13.1.Block Diagram of Test Setup

13.1.1.Block Diagram of connection between the EUT and simulators

(EUT: Battery Charger)

13.1.2.Surge Test Setup

13.2.Test Standard

```
EN IEC 55014-2: 2021
```

(IEC 61000-4-5: 2014+AMD1:2017, Severity Level: Line to Line: Level 2, 1.0KV, Line to Ground: Level 3, 2.0KV)

13.3. Severity Levels and Performance Criterion

13.3.1.Severity level

Severity Level	Open-Circuit Test Voltage
	KV
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

Performance criterion: B

13.4.EUT Configuration

The configurations of EUT are listed in Section 12.1.

 东莞市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F ...,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

13.5.Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 13.1.

Step 2: Turn on the power of all equipments.

Step 3: Let the EUT work in test mode (Full load, Half load, No load) and measure them.

13.6.Test Procedure

1) Set up the EUT and test generator as shown on Section 13.1.2.

2) For line to line and line to ground coupling mode, respectively provide a 1.0KV and 2.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.

3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.

4) Different phase angles are done individually.

5) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

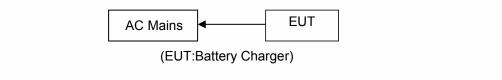
13.7.Test Results

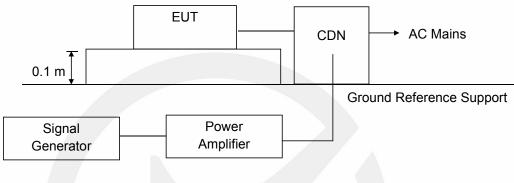
PASS.

Please refer to the following page.

东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2, Zone A, Zhongda Marine Biotechnology Research and Development Base , No.9, Xincheng Avenue, Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong, China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Surge Test Results EMTEK(DONGGUAN) CO., LTD.


Applicant : <u>Shenzhen AMC Technology Co., Ltd.</u>				Test Date : December 27, 2022	
EUT : <u>Battery Charger</u>					Temperature : 19.8 °C
					Humidity : 51.8%
Power Supply : AC 230V 50Hz, AC 120V 60Hz				Test Engineer : Chen Li	
Test Mode :	Full load, Ha	llf load, No l	oad		Criterion : B
Location	Polarity	Phase Angle	No of Pulse	Pulse Voltage (KV)	Result
	+	90°	5	1.0	PASS
L-N	-	270°	5	1.0	PASS
Note : No observa	ble change.				·


14. INJECTED CURRENTS TEST

14.1.Block Diagram of Test Setup

14.1.1.Block Diagram of connection between the EUT and simulators

14.1.2.Block Diagram of Test Setup

(EUT:Battery Charger)

14.2.Test Standard

EN IEC 55014-2: 2021 (IEC 61000-4-6:2013/COR1:2015, Severity Level: 3V (rms), 0.15MHz ~ 80MHz)

14.3. Severity Levels and Performance Criterion

14.3.1.Severity level

Level	Field Strength V
1.	1
2.	3
3.	10
X	Special

Performance criterion: A

14.4.EUT Configuration

The configurations of EUT are listed in Section 14.1.

东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd. Add: -1&2/F , Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

14.5.Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 14.1.

Step 2: Turn on the power of all equipments.

Step 3: Let the EUT work in test mod (Full load, Half load, No load) and measure them.

14.6.Test Procedure

1) Set up the EUT, CDN and test generators as shown on Section 14.1.2.

2) Let the EUT work in test mode and measure it.

3) The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

4) The disturbance signal described below is injected to EUT through CDN.

5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.

6) The frequency range is swept from 150KHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.

7) The rate of sweep shall not exceed $1.5*10^{-3}$ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

8) Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

14.7.Test Results

PASS.

Please refer to the following page.

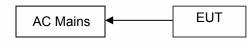
东莞市信測科技有限公司
地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn
EMTEK (Dongguan) Co., Ltd.
Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
Dongquan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Injected Currents Test Results

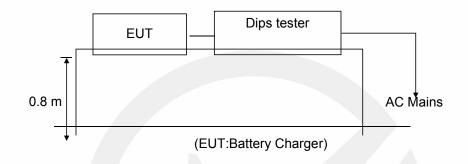
			LID.	
Applicant : <u>Shenzhen AMC Technology Co., Ltd.</u> Test Date : <u>December 27, 202</u>				
EUT : <u>Battery C</u>	Temperature	: <u>19.8</u> ℃		
M/N : <u>NBW54D</u>	<u>601D3D01</u>		Humidity :	51.8%
Power Supply : <u>AC</u>	230V 50Hz, AC 120V 6	0Hz	Test Enginee	r: Chen Li
Test Mode : Full load	d, Half load, No load			
Frequency Range (MHz)	Injected Position	Strength	Criterion	Result
0.15 ~230	AC Mains	3V(rms)	А	PASS
Test Mode :	-			
Frequency Range (MHz)	Injected Position	Strength	Criterion	Result
Remark : 1. Modulation S Measurement Equipmen CDN : ØCDN-M2 □CDN-M3	-	Note : No ot	bservable change.	

 东莞市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,


 Dongguan, Guangdong,China
 Http://www.emtek.com.cn

15. VOLTAGE DIPS AND INTERRUPTIONS TEST


15.1.Block Diagram of Test Setup

15.1.1.Block Diagram of connection between the EUT and simulators

(EUT:Battery Charger)

15.1.2.Dips Test Setup

15.2.Test Standard

EN IEC 55014-2: 2021 (IEC 61000-4-11: 2020)

15.3. Severity Levels and Performance Criterion

15.3.1.Severity level

Test Level %UT	Voltage dip and short interruptions %UT	Duration (in period)
0	100	0.5 1
40	60	5 10 25
70	30	50 *

Performance criterion: C

15.4.EUT Configuration

The configurations of EUT are listed in Section 15.1.

 东赛市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

15.5.Operating Condition of EUT

Step 1: Setup the EUT as shown in Section 15.1.

Step 2: Turn on the power of all equipments.

Step 3: Let the EUT work in test mode (Full load, Half load, No load) and measure it.

15.6.Test Procedure

- 1) Set up the EUT and test generator as shown on Section 15.1.2.
- 2) The interruptions are introduced at selected phase angles with specified duration.
- 3) Record any degradation of performance.

15.7.Test Results

PASS.

Please refer to the following page.

Voltage Dips And Interruptions Test Results

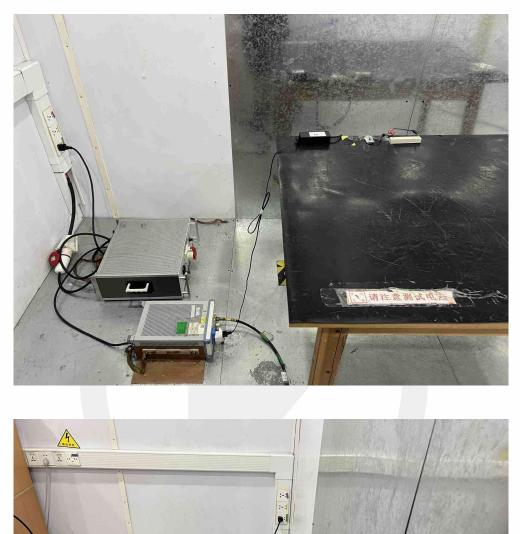
EMTEK(DONGGUAN) CO., LTD.

Applicant : Shenzhen AMC Technology Co., Ltd.				December 27, 2023	
EUT : <u>Battery Charger</u>				: <u>19.8 ℃</u>	
M/N : <u>N</u> E	3W54D601D3D01		Humidity :	51.8%	
Power Supply :	Power Supply : AC 230V/120V 50/60Hz Test Engineer : Chen Li				
Test Mode :	Full load(50Hz)		·		
Test Level Voltage Dips &		Duration (in period)	Criterion		
% U _T	% U _T Short Interruptions % U _T	50 Hz	□A □ B ⊠C □ D	Result	
0	100	0.5 P	С	PASS	
40	60	10 P	С	PASS	
70	30	25 P	С	PASS	
Test Mode :	Test Mode : <u>Full load(60Hz)</u>				
Test Level Voltage Dips &		Duration (in period)	Criterion	Result	
% U _T	% U _T Short Interruptions % U _T	60 Hz	□A □ B ⊠C □ D	Result	
0	100	0.5 P	С	PASS	
40	60	12 P	С	PASS	
70	30	30 P	С	PASS	

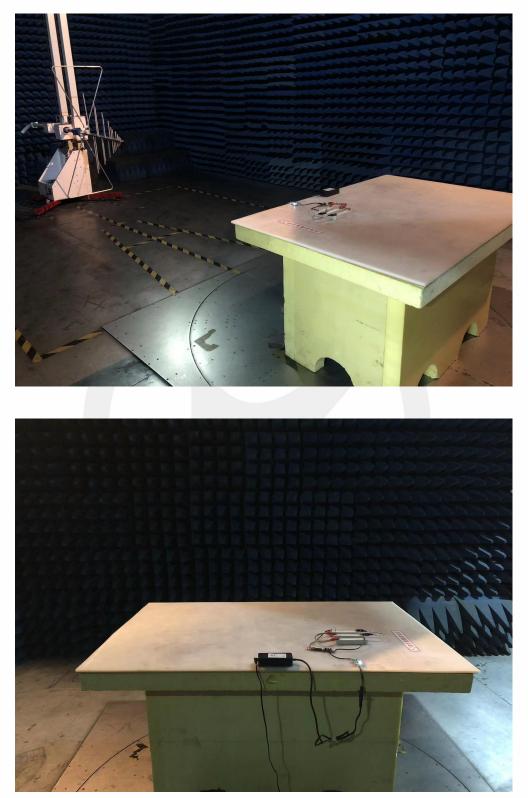
 奈亮市信測科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

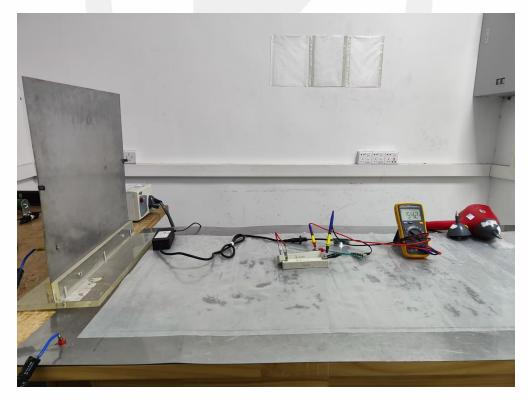

 Add: -1&2/F ., Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn


16. PHOTOGRAPH

16.1.Photo of Conducted Emission

16.2.Photo of Radiated Emission



16.3.Photo of Harmonic/Flicker

16.4.Photo of Electrostatic Discharge Test

16.5.Photo of Fast Transients Test

16.6.Photo of Surge Test

 东莞市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

16.7.Photo of Injected Currents Test

16.8.Photo of Voltage Dips And Interruptions Test

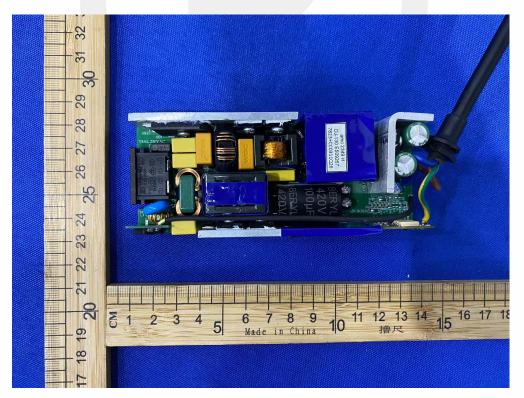
 东莞市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

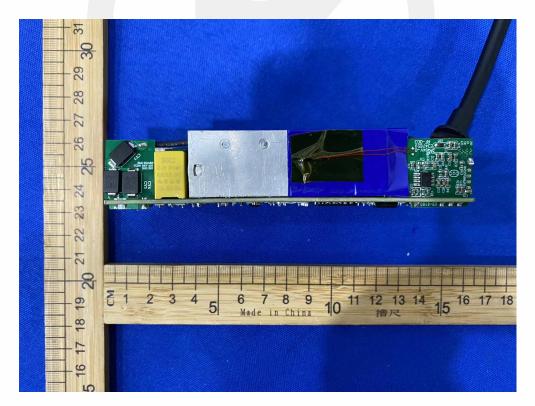
 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn
 E-mail: project@emtek.com.cn

APPENDIX (Photos of EUT)

东莞市信测科技有限公司地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cnEMTEK (Dongguan) Co., Ltd.Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,Dongguan, Guangdong,ChinaHttp://www.emtek.com.cn




 东莞市信测科技有限公司
 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.
 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,

 Dongguan, Guangdong,China
 Http://www.emtek.com.cn

-----The end----

 东莞市信测科技有限公司

 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn

 EMTEK (Dongguan) Co., Ltd.

 Add: -1&2/F .,Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone,
 Dongguan, Guangdong,China Http://www.emtek.com.cn

声明 Statement

1. 本报告无授权批准人签字及"检验报告专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

- 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;
 The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.
- 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内 部质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任,特别约定、标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议,请于收到报告之日起20日内提出;

Objections shall be raised within 20 days from the date receiving the report.